内核线程同步之wait_queue
在《内核线程同步之completion》一文中说到completion完成量也是基于wait_queue等待队列机制实现(这些机制不仅仅用于内核线程的同步,也可用于其他相关场景,这里用线程演示是其比较方便感受到效果),那么接下来就来了解下这一机制的相关内容,其在Linux Kernel源码include/linux/wait.h文件中有如下内容:
typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags; #define WQ_FLAG_EXCLUSIVE 0x01 void *private; wait_queue_func_t func; struct list_head task_list; }; struct __wait_queue_head { spinlock_t lock; struct list_head task_list; }; typedef struct __wait_queue_head wait_queue_head_t;
上面包含了等待队列和等待队列头部类型的结构体声明。其对应有如下静态初始化宏:
#define DECLARE_WAITQUEUE(name, tsk) \ wait_queue_t name = __WAITQUEUE_INITIALIZER(name, tsk) #define DECLARE_WAIT_QUEUE_HEAD(name) \ wait_queue_head_t name = __WAIT_QUEUE_HEAD_INITIALIZER(name)
还有如下动态初始化宏和函数:
#define init_waitqueue_head(q) \ do { \ static struct lock_class_key __key; \ \ __init_waitqueue_head((q), #q, &__key); \ } while (0) static inline void init_waitqueue_entry(wait_queue_t *q, struct task_struct *p) { q->flags = 0; q->private = p; q->func = default_wake_function; } static inline void init_waitqueue_func_entry(wait_queue_t *q, wait_queue_func_t func) { q->flags = 0; q->private = NULL; q->func = func; }
还有添加、移除等待队列的函数头:
extern void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait); extern void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait); extern void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
其中都是将wait等待队列添加到以q为头的等待队列中,或者是从以q为头的等待队列中移除wait等待队列。 还有如下在等待队列上睡眠等待指定条件(资源)的宏:
#define wait_event(wq, condition) \ do { \ if (condition) \ break; \ __wait_event(wq, condition); \ } while (0) #define wait_event_timeout(wq, condition, timeout) \ ({ \ long __ret = timeout; \ if (!___wait_cond_timeout(condition)) \ __ret = __wait_event_timeout(wq, condition, timeout); \ __ret; \ }) #define wait_event_interruptible(wq, condition) \ ({ \ int __ret = 0; \ if (!(condition)) \ __ret = __wait_event_interruptible(wq, condition); \ __ret; \ })
以及对应的唤醒宏:
#define wake_up(x) __wake_up(x, TASK_NORMAL, 1, NULL) #define wake_up_interruptible(x) __wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)
还有判断waitqueue是否存活的函数:
static inline int waitqueue_active(wait_queue_head_t *q) { return !list_empty(&q->task_list); }
具体也不用多解释,从Completion已经可以开始感受到Linux Kernel的一些命名风格了,下面还是以两人个内核线程的方式来演示等待队列的使用:
#include <linux/module.h> #include <linux/kthread.h> #include <linux/wait.h> static struct task_struct * slam1, * slam2; static wait_queue_head_t slam_wq_head; static int wakeup_condition = 0; extern unsigned long msleep_interruptible(unsigned int msecs); static int slam1_func(void *data) { do{ printk("I'm in slam1,wating slam_wq_head to wakeup me!\n"); wait_event_interruptible(slam_wq_head, wakeup_condition == 5); wakeup_condition=0; printk("slam1:slam_wq_head wakeup me done!\n"); }while(!kthread_should_stop()); return 0; } static int slam2_func(void *data) { do{ printk("I'm in slam2_func,i'll do wakeup!\n"); wakeup_condition++; if((wakeup_condition == 5) && waitqueue_active(&slam_wq_head)){ wake_up_interruptible(&slam_wq_head); } msleep_interruptible(1000); }while(!kthread_should_stop()); return 0; } static __init int kthread_waitqueue_init(void) { init_waitqueue_head(&slam_wq_head); slam1 = kthread_run(slam1_func, NULL, "slam1"); if(IS_ERR(slam1)) { printk("kthread_run slam1 failed!\n"); return 1; } slam2 = kthread_run(slam2_func, NULL, "slam2"); if(IS_ERR(slam2)) { printk("kthread_run slam2 failed!\n"); return 1; } return 0; } static __exit void kthread_waitqueue_exit(void) { if(!IS_ERR(slam1)) kthread_stop(slam1); if(!IS_ERR(slam2)) kthread_stop(slam2); } module_init(kthread_waitqueue_init); module_exit(kthread_waitqueue_exit);
相应的Makefile文件内容如下:
obj-m += kthread_waitqueue_example.o CUR_PATH:=$(shell pwd) LINUX_KERNEL_PATH:=/home/xinu/linux-3.13.6 all: make -C $(LINUX_KERNEL_PATH) M=$(CUR_PATH) modules clean: make -C $(LINUX_KERNEL_PATH) M=$(CUR_PATH) clean
相应的源码文件目录树如下:
/home/xinu/xinu/linux_kernel_driver_l1/kthread_waitqueue_example/
├── kthread_waitqueue_example.c
└── Makefile
注意源码里wait一方在等到条件成立时要修改条件的值,不然就一直不用等了。
在卸载模块时也有Completion的速度问题,可参照其修改。
还有这里只是简单使用了等待队列头,而等待队列呢?
请看下面,只是修改了初始化,把新的等待队列绑定了其处理函数,可从dmesg里查看到:
/home/xinu/xinu/linux_kernel_driver_l1/kthread_waitqueue_example/
├── kthread_waitqueue_example.c
└── Makefile
注意源码里wait一方在等到条件成立时要修改条件的值,不然就一直不用等了。
在卸载模块时也有Completion的速度问题,可参照其修改。
还有这里只是简单使用了等待队列头,而等待队列呢?
请看下面,只是修改了初始化,把新的等待队列绑定了其处理函数,可从dmesg里查看到:
#include <linux/module.h> #include <linux/kthread.h> #include <linux/wait.h> static struct task_struct * slam1, * slam2; static wait_queue_head_t slam_wq_head; static wait_queue_t slam_wq; static int wakeup_condition = 0; extern unsigned long msleep_interruptible(unsigned int msecs); static int slam_wq_func(wait_queue_t *wait, unsigned mode, int flags, void *key) { printk("I'm in slam_wq_func!\n"); return 0; } static int slam1_func(void *data) { do{ printk("I'm in slam1,wating slam_wq_head to wakeup me!\n"); wait_event_interruptible(slam_wq_head, wakeup_condition == 5); wakeup_condition=0; printk("slam1:slam_wq_head wakeup me done!\n"); }while(!kthread_should_stop()); return 0; } static int slam2_func(void *data) { do{ printk("I'm in slam2_func,i'll do wakeup!\n"); wakeup_condition++; if((wakeup_condition == 5) && waitqueue_active(&slam_wq_head)){ wake_up_interruptible(&slam_wq_head); } msleep_interruptible(1000); }while(!kthread_should_stop()); return 0; } static __init int kthread_waitqueue_init(void) { init_waitqueue_head(&slam_wq_head); init_waitqueue_func_entry(&slam_wq, slam_wq_func); add_wait_queue(&slam_wq_head, &slam_wq); slam1 = kthread_run(slam1_func, NULL, "slam1"); if(IS_ERR(slam1)) { printk("kthread_run slam1 failed!\n"); return 1; } slam2 = kthread_run(slam2_func, NULL, "slam2"); if(IS_ERR(slam2)) { printk("kthread_run slam2 failed!\n"); return 1; } return 0; } static __exit void kthread_waitqueue_exit(void) { if(!IS_ERR(slam1)) kthread_stop(slam1); if(!IS_ERR(slam2)) kthread_stop(slam2); } module_init(kthread_waitqueue_init); module_exit(kthread_waitqueue_exit);
这里只是简单加了个等待队列并且绑定相应处理函数,等相应的等待队列被唤醒后,其对应的函数就会被执行,这里的等待队列头部只加入我们新加的等待队列,故而等会唤醒时该函数也会执行,可以多加几个等待队列到队头再对比下,这个自己动手试试吧。
参考网址:
http://edsionte.com/techblog/archives/1854
http://www.cnblogs.com/zhuyp1015/archive/2012/06/11/2545702.html
http://www.cnblogs.com/zhuyp1015/archive/2012/06/09/2542882.html
http://www.cnblogs.com/zhuyp1015/archive/2012/06/09/2542894.html
http://linuxinme.blogspot.com/2007/06/wait-queues.html
http://huenlil.pixnet.net/blog/post/25190567-%5B%E8%BD%89%5Dlinux-kernel—wait-queue.
http://geeki.wordpress.com/2010/10/30/ways-of-sleeping-in-linux-kernel/
http://gauss.ececs.uc.edu/Courses/c4029/exams/Spring2013/Review/wait_queue_driver.c
http://blog.sina.com.cn/s/blog_6a7217e80101awe5.html
参考网址:
http://edsionte.com/techblog/archives/1854
http://www.cnblogs.com/zhuyp1015/archive/2012/06/11/2545702.html
http://www.cnblogs.com/zhuyp1015/archive/2012/06/09/2542882.html
http://www.cnblogs.com/zhuyp1015/archive/2012/06/09/2542894.html
http://linuxinme.blogspot.com/2007/06/wait-queues.html
http://huenlil.pixnet.net/blog/post/25190567-%5B%E8%BD%89%5Dlinux-kernel—wait-queue.
http://geeki.wordpress.com/2010/10/30/ways-of-sleeping-in-linux-kernel/
http://gauss.ececs.uc.edu/Courses/c4029/exams/Spring2013/Review/wait_queue_driver.c
http://blog.sina.com.cn/s/blog_6a7217e80101awe5.html
评论
发表评论